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provided for those interested in more advanced analysis.

Citation: Eloyan A, Li S, Muschelli J, Pekar JJ, Mostofsky SH, et al. (2014) Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R. PLoS
ONE 9(2): e89470. doi:10.1371/journal.pone.0089470

Editor: Essa Yacoub, University of Minnesota, United States of America

Received July 12, 2012; Accepted January 22, 2014; Published February 28, 2014

Copyright: � 2014 Eloyan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was supported by grants P41EB015909 and R01EB012547 from the National Institute of Biomedical Imaging and Bioengineering, grant
R01NS060, from the National Institute of Neurological Disorders and Stroke. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aeloyan@jhsph.edu

Introduction

This primer was created to give statisticians who are new to the

field of imaging data analysis a quick overview of functional

magnetic resonance imaging (fMRI) data and to describe tools for

programming their own analyses of fMRI. It is targeted at those

who would like to pursue programming using the R project [1].

The key benefit of programming on one’s own is the ability to

extend analyses and build and create new tools. Of course, the key

benefits of using the R project are that it is open source, cross-

platform, free (as in cost), and is an award-winning lingua franca of

statisticians. Matlab (www.mathworks.com) is the standard script-

ing language in neuroimaging and signal processing, and has a

widely used integrated development environment and GUI

creation software. Both R and Matlab are cross-platform and

have excellent graphics capabilities. Both are high level scripting

languages that are easy to learn and have a large collection of add-

ons and subroutines.

For those wanting more automated methods for the analysis of

fMRI data, several programs exist to perform most standard

analyses. In addition, power users should learn these programs for

comparison purposes to avoid reinventing existing and well

established tools. We give a nonexhaustive list of some of our

favorite freely available software below.

SPM SPM (http://www.fil.ion.ucl.ac.uk/spm/) is a collection

of open source Matlab scripts, often calling compiled code. SPM is

arguably the most popular software for the analysis of fMRI data,

in no small part due to a well developed GUI. It has methods for

single-subject and multi-subject analyses and tools for displaying

the results and data visualization. It can perform all of the basic

preprocessing procedures of the imaging data. Moreover, it has an

active user community with several user contributed add-ons. The

SPM scripts are well documented, and are easily understood.

FSL FSL (http://www.fmrib.ox.ac.uk/fsl/) is a UNIX-based

software that performs single- and multi-subject analyses, prepro-

cessing and visualization of results. It has a graphical user

interface, though is most effectively used at the command line,

tying routines together using shell scripts. FSL is open source and

can be compiled from scratch. In addition, pre-compiled binaries

are available, notably for OSX. For Windows, FSL can be run in a

virtual machine.

MIPAV MIPAV (http://mipav.cit.nih.gov/) is a JAVA soft-

ware created by the US National Institutes of Health. It has very

broad functionality for preprocessing, analysis and visualization of

imaging data. However, it is most useful through an active

collection of modules.

AFNI AFNI (http://afni.nimh.nih.gov/afni/) is a UNIX-based

software. It offers a full analysis and processing suite. We often use

it in conjunction with FSL and BASH scripting.

FreeSurfer FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)

is a UNIX-based software for registration (often atlas based) and

analysis of medical imaging data. It is often discussed as having

excellent registration and visualization tools.

ANTS ANTS [3] is a UNIX-based software for preprocessing

of imaging data. It provides methods for linear and nonlinear

registration of images.

In addition to the above tools for analysis and processing of

fMRI data, there are R packages related to fMRI. We list a few

packages here primarily focused on analysis postregistration.

AnalyzeFMRI [3] Analysis package for reading and writing of

fMRI including a graphical user interface. It can also be used for

performing temporal and spatial ICA.
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oro.nifti [4] Package for reading in NIfTI files, a common

fMRI imaging format. It can be used for reading compressed files.

oro.dicom [5] Package for reading in DICOM files, another

common fMRI imaging format.

fmri [6] Package for reading in and analyzing fMRI data.

Includes graphical user interface for fMRI analysis and adaptive

smoothing for fMRI along with inference.

neuRosim [7] Package for simulating fMRI data. As a

consequence, has tools for creating and investigating designs with

HRF convolution models.

arf3DS4 [8] Package for activated region fitting for fMRI data

in NIfTI format.

Rniftilib [9] Package for loading and writing the 3D or 4D

images.

RNiftyReg [10] Package for 2D or 3D image registration.

brainwaver [11] Package for functional connectivity analysis.

tractor.base [12] Package for reading, writing, and graphical

representation of images.

waveslim [13] Package for wavelet analysis of 1D, 2D and 3D

images.

cudaBayesreg [14] Package for Compute Unified Device

Architecture (CUDA) based Bayesian multilevel analysis of fMRI

data.

We will use some of the packages above in the examples in this

manuscript. In addition, a frequently updated more exhaustive list

on CRAN of packages for medical image analysis can be found

here:

http://cran.r-project.org/web/views/MedicalImaging.html.

The remainder of the manuscript is organized as follows.

Sections 1, 2 and 3 describe the structure of the fMRI data, discuss

ways of obtaining the data and give a brief overview of the

preprocessing steps. Section 4 describes the different formats that

can be used for viewing the fMRI data in R along with examples

of obtaining a Gaussian smoother of the data matrix and the mask

of the three dimensional image. A discussion of the hemodynamic

response (HR) function and the role of the design matrix in task-

based fMRI studies is presented in Section 5. The between-subject

random effect models are discussed in Section 6. Section 7 gives an

overview of the connectivity based analysis of fMRI data including

methods based on seed-voxel analysis, singular value decomposi-

tion and independent component analysis. As the main goal of the

manuscript is centered on the statistical analysis of fMRI data via

R, we do not present visualization tools in detail, however, we

briefly discuss a few of the visualization tools in R or other software

in Section 8. Finally, the last section completes the article by

pointing out useful further reading material.

Materials and Methods

1 fMRI
FMRI is a modern brain imaging measurement technology. As

its name suggests, the technology is used to explore brain function

(activity) by obtaining several images of the brain over time using

an MRI machine. Standard fMRI images the so-called blood

oxygen level dependent (BOLD) signal, described further below.

An extensive overview of the statistical methods developed for the

analysis of fMRI data is presented by [15], [16], [17] and [18].

Herein, we will discuss the implementation of some of these

commonly used techniques in R, while providing brief discussions

as to the methods and the interpretation of the results. BOLD

fMRI is not the only functional brain imaging technology available

using an MRI scanner (see [19] for an overview). For example,

arterial spin labeling [20] is a closely related functional MRI

technology. However, the term fMRI, when used without

qualifying statements, refers to BOLD fMRI. We note that

positron emissions tomography (PET), single photon emissions

computed tomography, electroencephalograms (EEG), magneto-

encephalograms (MEG) and other non-magnetic resonance based

measurement devices can be used for functional brain imaging,

each with different goals, limitations, strengths and scientific

interpretations.

We will not thoroughly discuss the details of the methods by

which the MRI scanners use the principles of magnetic resonance

to achieve different images. However, newcomers to the area may

be surprised to find the amazing variety of biological signals that

one can visualize using MRI. These include separate modalities to

study white matter, gray matter, overall structure, white matter

tracts, tracers injected into the body and lesions in the brain.

There are multiple types of structural and functional images, all

acquired using the principles of MR. See [19] and [21] for a

general introduction to MR imaging.

The BOLD signal ([22], [23]) measures the cerebral hemody-

namic changes concomitant to neuronal activation of the brain. A

localized increase in neural activity results in an increase in blood

flow (‘‘reactive hyperemia’’ [24],[25]) to the activated region when

excess of oxygenated hemoglobin is delivered to the region.

Consequently, a reduction in deoxyhemoglobin concentration

follows, resulting in an increase in magnetic field homogeneity.

The gradient echo EPI sequence ([26], [27]) allows to study the

activation of specific regions of the brain during a task.

Deoxyhemoglobin serves as an endogenous susceptibility contrast

agent allowing MRI to report on local hemodynamic changes.

Hence, the BOLD signal in response to a stimulus is given a name

- the hemodynamic response. Figure 1 shows an example

hemodynamic response function (HRF). In Figure 1, an initial

delay of the response can be observed since it takes time for the

vasculature of the brain to respond to the need for oxygen after the

stimulus. This is followed by a subsequent brief undershoot [28].

The origin of the undershoot is controversial. One explanation of

the undershoot is that there is ongoing oxygen consumption after

reaching the point of origin. The other is that the excess volume of

deoxygenated blood results in delayed vascular compliance.

In BOLD fMRI the scanner records images approximately

every second (the so-called TR or time of repetition). At each time

point, a 3D image of the brain is obtained. Often, in BOLD fMRI,

the image is collected one slice at a time for each time point

instead of scanning the 3D image immediately. Hence, a slice time

correction (e.g., by Fourier transformation [28]) is applied to the

resulting images as part of the preprocessing. Empirical face

validity of the methodology can be demonstrated by simple motor

or visual tasks. For example, consider a ‘‘finger tapping’’ task

where a subject is asked to tap their finger while in the scanner and

then rest, repeating this sequence for a certain time interval. When

the images are averaged over the times at rest and compared to the

times when tapping the finger, and appropriate statistical tests are

performed, motor areas of the brain are clearly activated (see [29]

for overview of finger tapping task-related analysis in the

literature). By virtue of the well-defined motor area of activation

and ease of performing the task, finger tapping tasks are commonly

used for scanner and methodological validation. They are also of

intrinsic interest in the study of motor areas. Various other tasks

can be designed depending on the goals of the study. More

recently, resting state fMRI has been used to explore the brain

function when the subject is at rest. Section 5.1 provides details on

how the experimental design can inform the statistical analysis of

the data.

The development of the BOLD fMRI technology facilitated

research in the analysis of cognitive function of the brain [15]. For
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instance, one may be interested in identifying which regions are

involved in performing a mental operation or a cognitive task, how

active is a brain region during a task, what is the shape of the time

course of activation or quantifying the extent of connectivity

between brain regions during tasks. Since there are several sources

of variability introduced during data collection, statistical methods

are required in order to accurately obtain the regions of interest.

For instance, in Section 5.1 we discuss two types of experimental

designs used frequently in fMRI analysis: block design and event-

related design. It can be shown that the block designs have high

detection power (i.e., the ability of the method to detect

activation), whereas the event related designs have better

estimation efficiency in that they can be used to estimate the

shape of the HRF [30]. In Section 5.1, we show several statistical

methods that can be used to answer the questions posed above.

For the purpose of statistical analysis the observed fMRI dataset

contains a 3D array of intensities for each time point. The number

of timepoints can vary depending on the length of the scan and is

usually in hundreds. Axial slices of the 3D images at each time

point for a subject at rest are shown in Figure 2 top panel. A voxel

(or volumetric pixel) is defined as a 3D unit element in the image.

The background of the image is generally removed and the voxels

in the brain are used for analysis. Depending on the research

question one may choose to organize the data differently. For

instance, the time courses of each voxel (as shown in Figure 2

bottom panel) may be analyzed (voxel-wise) to identify the voxels

that are activated during a task. The 3D images at each time point

may be vectorized and concatenated to obtain a time|space
matrix that can be further analyzed to discover brain networks.

The correlations of time courses for each pair of voxels in the brain

are often used in connectivity analysis, that is in identifying areas

of the brain that activate and deactivate together.

2 Obtaining data
As many neuroscience researchers are joining open science

initiatives promoting public access for data, numerous websites

offer datasets that can be downloaded freely. However, we have a

few favorite canonical datasets that are good starting points for

analysis. The first are SPM’s example datasets that can be used for

single-subject and inter-subject analyses. The second dataset of

interest is the 1000 Functional Connectomes Project (FCP)/INDI

[31] resting-state data. Most of the SPM datasets are preprocessed

and ready for analysis; however, the FCP data need extensive

preprocessing. UNIX shell scripts using FSL and AFNI can be

found on their website for those who are interested in preprocess-

ing.

The SPM example datasets can be downloaded at

http://www.fil.ion.ucl.ac.uk/spm/data/

The 1,000 FCP dataset can be downloaded at

http://www.nitrc.org/projects/fcon_1000/

As mentioned above, the 1,000 FCP data involves the most

preprocessing. We therefore put a processed image in .nii format

along with the corresponding 2D matrix in an R data file format

with the extension .rda (the .rda files can be loaded by using the

load() function in R) for download on our servers at

www.biostat.jhsph.edu/,bcaffo/downloads/rest_res2standard.

nii.gz www.biostat.jhsph.edu/,bcaffo/downloads/

imageDataMatrix.rda

Figure 1. Anatomy of the HRF.
doi:10.1371/journal.pone.0089470.g001
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For illustrating the analysis in this manuscript, we choose images

from the Kennedy Kreiger Institute (the home institution of some

of the coauthors of this manuscript).

We also note that FSL has an evaluation suite, the FEEDS

dataset, that we have found very useful, both for learning FSL as

well as debugging new methods. The FSL example dataset can be

downloaded at:

http://www.fmrib.ox.ac.uk/fsl/feeds/doc/index.html

3 Preprocessing
Preprocessing is an essential component in the analysis of fMRI

data. Standard preprocessing requires, for example, skull stripping,

evaluation and corrections for motion, coregistering, spatial

smoothing and registration to a template. We discuss two

preprocessing steps in particular: spatial smoothing and registra-

tion to a template. However, for newcomers to the area, we

suggest leaving all the steps, except for possibly the spatial

smoothing to standard software, or acquiring data where

preprocessing has already been completed in an acceptable

manner. For those readers interested in pursuing preprocessing

as a research endeavor, good theoretical foundations are given by

[32], [33] and [34].

Warping the images of a subject to a template, often called

spatial registration or spatial normalization, is the key step of

attempting to put subject images into a common space. That is,

each registered image is transformed to the same space and hence

the spatial locations of the voxels in the brain are ideally

interpretable across subjects, in other words, voxel 1 for subject

1 is the same as voxel 1 for subject 2. In functional neuroimaging,

this process relies on numerous assumptions. For example, it

presumes anatomical similarity across subjects at the functional

resolution of interest. This assumption becomes especially

problematic when studying diseased brains, where anatomy can

be drastically different than the healthy control template brain.

Also, it presumes localization of the brain function of interest to

common anatomical locales across subjects.

Setting these issues aside, registration is accomplished by

mathematically warping each subject’s collection of images over

time to a so-called ‘‘template’’. A template is typically a highly

detailed structural image obtained by imaging a subject repeatedly

or warping several subjects into one common image. The template

is useful for overlaying results on top of it which then helps in

contextualizing the results. It is important to know what template

was used to warp the images one is analyzing. Because it is often a

highly accurate structural image (or there is an associated image in

the same space), it is useful for interpretation, as neuroscientists

can visually relate findings to important structural landmarks.

Moreover, some templates are in wide use and key regions have

been tabulated (see [35] for more details). We normally use

templates created by the Montreal Neurological Institute (MNI) at:

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

The International Consortium for Brain Mapping (http://www.

loni.ucla.edu/ICBM/) releases labeled brain atlases. We should

also mention the famous Talairach Atlas, which is a coordinate

system created before MR imaging was in place. Relating results

to Talairach coordinates is often done to put results in a historical

perspective familiar to neuroscientists. Some templates have

conversion utilities to convert their coordinates to Talairach

coordinates.

Finally, spatial smoothing using a filter is a step that can be

easily done in R. The choice of whether spatial smoothing is

necessary to perform is generally a designed component of a

statistician’s analysis plan. Hence, of all the preprocessing steps,

this is the one we suggest to be performed in R if deemed

necessary.

4 Loading data and structures
4.1 Array format. Two key data representations are the

array format and the matrix format. The first is the more

Figure 2. Resting state fMRI image for 1 subject. The top panel shows one axial slice from the 3D image acquared at each of the 152 time
points. vi denotes a voxel in the brain with coordinates [46, 64, 37]. The plot below shows the intensity of the image at voxel vi (on the y-axis) at each
time point (the x-axis corresponds to time).
doi:10.1371/journal.pone.0089470.g002
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natural format for the data. Suppose I is an array representing

a 3D image of the brain, where I[i,j,k] is the intensity of voxel

i,j,k. If the image is collected repeatedly over time (as in fMRI),

then 4D arrays ( I[i,j,k,t]) are useful, though often are very large.

Medical images in neuroimaging are usually saved in one of a

few available formats. However, all formats have common

properties, for instance, they are binary and the data are stored

as a long floating point vector. Header information includes

descriptive features of the image such as the physical dimensions of

a voxel and the size of each of the three dimensions, as well as

other information.

DICOM Digital Imaging and Communications in Medicine

(DICOM) is a standard image format from National Electrical

Manufacturers Association often used as scanner output. DICOM

images have the header information built into the binary file. 3D

DICOM files are sometimes split into several files of 2D slices, but

can be combined into a single file.

Analyze The Analyze format includes two files for each 3D

image: a header file with the extension .hdr and an image file with

the extension .img. The header and image files have to have the

same filename and have to be saved in the same folder. The 4D

fMRI images are often stored as separate files, where the 3D image

for each time point is saved as a separate file. In Analyze 7.5

format, the 4D images can be saved using one .img and one .hdr

file.

NIfTI NIfTI files typically have the extension .nii and are a

current standard for the analysis of fMRI data. NIfTI files can

have more than 3 dimensions. Often NIfTI files are compressed

using gzip and so the file extension is .nii.gz. If your analysis

program cannot gunzip the file, simply uncompress it using any of

the standard compression software tools and the result will be a

standard (uncompressed) NIfTI file. The R package oro.nifti can

be used to read in the gzipped files directly.

In this example, we read in a sample 3D so-called contrast

image and smooth it using a 3D Gaussian filter [36] included in

the package AnalyzeFMRI. For illustration, we are using one of

the SPM datasets (see [37], for more information about the

dataset) described in Section 2. First we read in the data.

library(AnalyzeFMRI)

imageFileName ,- ‘‘pathToImageFile/imageFile.img’’

img ,- f.read.analyze.volume(imageFileName)[,,,1]

Here we assume that imageFile.img is an Analyze image file

with a header and image pair: imageFile.hdr and imageFile.img.

Notice this data is 3D, yet the program reads it in as 4D, where the

first three dimensions correspond to the size of the 3D image and

the fourth dimension is set to 1. Hence the array subscripting

drops the dimension by 1. It is often useful to read in the header

information.

headerFileName ,- ‘‘pathToImageFile/imageFile.hdr’’

hdr ,- f.read.analyze.header(headerFileName)

We can visualize this image using the image function.

# visualize the image

tempImg ,- img

tempImg[is.na(tempImg)] ,- min(img, na.rm = TRUE)

for(k in 1: dim(img)[3])

image(tempImg[,,k], axes = FALSE)

Note that the creation of the temporary image tempImg in this

example is only useful as the background of the raw image is stored

as NA. Note also by default the image command does not scale the

image relative to the actual voxel dimensions. The parameter asp

can be used to specify the aspect ratio y/x which would result in

the correct voxel dimensions. The following code smooths the

image using the function GaussSmoothArray.

simg ,- GaussSmoothArray(tempImg,

voxdim = c(3, 3, 3),

ksize = 5,

sigma = diag(4, 3),

mask = as.integer(!is.na(img)))

for(k in 1: dim(img)[3])

image(simg[,,k], axes = FALSE)

Here the mask statement contains the smoother to the non-

background areas, i.e., the smoother is applied to the non-

background voxels which have the value of 1 in the mask. The

voxdim variable contains the voxel dimensions, in this case three

millimeters cubed. The voxel dimensions can be found using

visualization programs or inspecting the hdr variable. The ksize

and sigma parameters are smoothing parameters. The sigma

parameter is the standard deviation of the Gaussian kernel

(specified in mm) while ksize is the truncation width. See the

documentation for GaussSmoothArray for more information.

Figure 3 shows an axial slice of the original image along with the

corresponding smoothed image (see Section 8 for more details on

displaying images).

4.2 Matrix format. The array format, while useful for

smoothing, is not a convenient data structure for most other

analyses. Most importantly, it is not a parsimonious structure,

since it includes all of the voxels outside of the brain, i.e., the

background of the image. In some fMRI analysis, where the

spatial structure of the voxels is disregarded, a common mask is

applied to the 3D data and the data are then saved in a long 1D

vector. In fMRI, if there is one vector per time or subject, these

can be stacked into a matrix for analysis. Under this structure, any

analysis of the resulting matrix must be invariant to spatial

location. The spatial location information can be kept elsewhere

Figure 3. A slice of the fMRI image plotted by using the image()
function in R (left) along with the corresponding smoothed
slice (right). Here the red color corresponds to high intensity values,
followed by yellow and white as the values decrease.
doi:10.1371/journal.pone.0089470.g003

fMRI Analysis Using R

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e89470



for back reconstruction of the image. For example, if there are

30,000 nonbackground voxels, one could retain the 3|30,000

matrix of location indices for those voxels. Masks can be created in

a variety of ways. They can be obtained from the template or from

the data itself. The mask is an important structure to retain, as it

can map a vector back to an array format for display.

Here, we will take a collection of 3D images for one subject (one

3D image per time point) and create a mask. Using the mask, we

will then create the data matrix. First, we read in the list of the files

(with absolute paths).

library(AnalyzeFMRI)

# the directory where the images are stored

fileDir ,- ‘‘pathToImageFile’’

# the collection of images

files ,- dir(fileDir, pattern = ‘‘*.img’’, full.names = TRUE)

It is useful to have the image dimensions assigned to an object.

We are assuming that all images are registered and have the same

dimensions.

# obtain the image dimensions by loading the first image

imageDim ,- f.read.analyze.header(files[1])$dim[2: 4]

Now we loop over the time courses and collect them into a

matrix by grabbing the relevant indices across the time courses.

We then find the corresponding non-background indices and place

them in a vector called mask.

mask3D ,- array(1, imageDim)

for (file in files) {

img ,- f.read.analyze.volume(file)[,,,1]

mask3D ,- mask3D * (!is.na(img))

}

# the mask is a list of indices

mask ,- which(mask3D = = 1)

Next, we loop over scans and collect them into a matrix by

grabbing the relevant indices across scans.

# now cycle through the data and get the data into a matrix

format

dataMatrix ,- NULL

for (file in files) {

# load file and make 3D

img ,- f.read.analyze.volume(file)[,,,1]

dataMatrix ,- rbind(dataMatrix, img[mask])

}

noScans ,- nrow(dataMatrix)

noVoxels ,- ncol(dataMatrix)

5 Within subject paradigm analysis
5.1 Discussion on designs. When designing the experiment

in task-based fMRI the aim is to maximize the statistical power in

detecting activation during the task while assuring the validity of

the psychological results. In task-based fMRI, there are two

common designs: event-related and block design. Event-related

refers to multiple stimuli that are assumed to occur instantaneously

and have randomized time between events. A simple task would be

to have the participant push a button approximately every 20

seconds to look at motor cortex activation though the events do

not have to be equidistant. If a ‘‘continuous’’ task is performed,

such as sequential finger tapping, for a certain time interval

followed by a short block of rest, the design is referred to as block

design. Examples of stimulus functions in each design are

presented in Figure 4. The choice of event-related design versus

a block design depends on the final goal of the experiment. The

block designs lead to higher detection power, however, the subjects

may learn the patterns of the experiment which may affect the

interpretation of the results. Event-related designs reduce the

effects of learning, boredom and other events unrelated to the task

while exhibiting loss in detection power (see [17] for more

discussion on designs and [38] on optimization of design

parameters).

Suppose we have fMRI data for one subject during a task. The

goal is to identify the area of the brain that activates during the

task, which is performed by the subject. Typically, the fMRI data

can be modeled as a sum of response, drift and noise:

data~responsezdriftznoise:

The response (i.e., the BOLD response) is often modeled using a

linear time invariant system (see [17] for other ways of modeling

the BOLD response). Assume the response is a linear combination

of responses from K different stimuli. That is, the response for

voxel i, i~1, . . . ,V at time t, t~1, . . . ,T , can be written as

xi1(t)bi1z:::zxiK (t)biK , where xik(t) is the response from

stimulus k at time t in voxel i, K is the number of stimuli, T is

the number of scans and V is the number of non-background

voxels in each scan. The response from each stimulus depends on

the stimulus function and the HRF, often modeled as a

convolution of the two functions
Ð

hi(u)sk(t{u)du, where hi(:) is

the HRF at voxel i and sk(:) is the stimulus function corresponding

to stimulus k. The modeling of the HRF function is an important

part of the analysis and is discussed in more detail in Section 5.2.

In addition to the random variability, periodic noise may be

present in fMRI data unrelated to the true BOLD response. This

Figure 4. Stimulus vectors for an event-related design (top)
and a block design (bottom). The spikes correspond to the onsets of
stimuli. There is a sustained period of activity/task in the block design.
In both cases, the spacings between events can be unequal.
doi:10.1371/journal.pone.0089470.g004
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can result, for example, from the patient’s heartbeat or other

systematic effects. As a result, some voxels in the brain may show

considerable drifts over time. The drift can be linear or nonlinear,

hence a flexible polynomial model is often employed to allow for

nonlinear effects in the drift. For example, a polynomial drift of

order q for scan t at voxel i can be written as
Pq

l~0 zl�il , where

zl~tl{1. Finally, a random error Ei(t) is added to the observed

data, Yi(t), at voxel i scan t yielding

Yi(t)~
XK

k~1

xik(t)bikz
Xq

l~1

zl�ilzEi(t):

In Section 4.2, we discussed how to construct a matrix from the

4D fMRI array. The resulting matrix is T|V dimensional: the

columns of which correspond to time courses in each voxel and the

rows are the spacial images for each scan. We define the vectorized

3D image for each time point t as Yt and

Y~½Y1,Y2,:::,YT �T ,

X~

x11 � � � x1K 1 � � � 1

x21 � � � x2K 1 � � � 2q

..

. ..
. ..

. ..
. ..

. ..
.

xT1 � � � xTK 1 � � � Tq

2
66666664

3
77777775

,

and

b~½b1,:::,bK ,�0,:::,�q�T ,EEE~½E1,E2,:::,ET �T :

The general linear model (GLM) can be written in matrix

notation as

Y~XbzEEE:

Note that, in the above equation, X is derived based on specific

hemodynamic assumptions, and b is interpreted as the size of the

hemodynamic response (see [39] for more details). The random

errors Et are generally not independent in time. The correlation

structure can be specified based on assumptions one is willing to

make about the dependence structure over time. Misspecification

of the correlation structure in GLM can lead to biased estimation

of coefficients. For example, the temporal correlations can be

modeled using a first order autoregressive model [40], that is,

Et~�Et{1z�i, where j�jv1 and �i are independent and

identically distributed. After estimating the parameters in the

GLM model, the p-value maps of the b coefficients are

thresholded to find the voxels where the corresponding bik is

significantly different from 0.

5.2 HRF modeling. In Section 1 we discussed the HRF

function, an example of which is shown in Figure 1. The

estimation of the HRF function is often of interest in fMRI

analysis. The HRF model in SPM implies that the HRF is a

discretized difference of two gamma functions (see [15], [40])

f (u)~f1(u){f2(u)=p5

~

T
p3

� �p1=p3
up1=p3{1 exp ({Tu=p3)

(p1=p3)

{

T
p4

� �p2=p4
up2=p4{1 exp ({Tu=p4)

(p2=p4)p5

,

for uw0. Typically, it is also normalized, either divided by its

integral or maximum, to have an average or peak value of 1

respectively. The logic behind this specification of the HRF is that

the initial post-stimulus increase in blood oxygenation is repre-

sented by f1, with the subsequent depletion represented by f2.

Notice that f1 is a gamma density with shape p1=p3 and rate

T=p3, and f2 is a gamma density with shape p2=p4 and rate T=p5.

The SPM documentation defines T as the TR, p1 as the delay of

the response to the onset, p2 as the delay of the undershoot relative

to the onset, p3 as the dispersion of the response, p4 as the

dispersion of the undershoot and p5 as the ratio of the response to

the undershoot. Conceptually, these are illustrated in Figure 1. We

briefly give motivation for these parameters. Note, the mean of

density f1 is p1=T while the mean of density f2 is p2=T . Hence, if

p1 and p2 are given in seconds and T is seconds per scan, p1=T
can be thought of as the delay to the mean (not modal) response in

TR units while p2=T is the delay to the mean undershoot in TR

units. Given that the gamma variance is p1p3=T2, and the mean is

p1=T , p3=T is the factor by which the response gamma

distribution mean is scaled to obtain its variance. Similarly,

p4=T is the factor by which the undershoot gamma distribution

mean is scaled to obtain its variance. Since the integral of f1 and f2

are 1, p5 is the ratio of the two functions comprising the HRF.

Note, it is not, as its name suggests, the ratio of the peak value of f1

to the peak value of f2.

The following example illustrates the use of the fmri.stimulus

function in R to create the expected HRF as described by [40] and

[6]. More appropriate choices of an HRF, such as spatially varying

HRF and dynamic sets of basis functions may also be used [41].

For instance, finite impulse response models and Fourier basis sets

are more flexible alternatives to the canonical HRF.

The R package fmri can be used to analyze fMRI data from one

subject and identify activation during a task. In the following

example, suppose imageFile.nii is a NIfTI data file. We first extract

the 4D numeric array using the function read.NIFTI. The onset

times of the stimulus (5.25, 21.45, 100.12, 223.5) and the durations

of ON stimuli in scans (5, 5, 10, 10) are known from the

experimental design. Next, we create the expected response for

each stimulus (defined by xk(t) above, assuming that the HRF is

the same in each voxel) using the function fmri.stimulus. The

function fmri.design is invoked to create the design matrix. Finally,

the coefficients of the hemodynamic response to the stimulus are

evaluated in the GLM [42].

library(fmri)

imageFileName ,- ‘‘pathToImageFile/imageFile.nii’’

img ,- read.NIFTI(imageFileName) onsets ,- c(5.25, 21.45,

100.12, 223.5)

dur ,- c(5, 5, 10, 10)

hrf ,- fmri.stimulus(scans = img$dim0[4],

onsets = onsets,
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durations = dur)

x ,- fmri.design(hrf, order = 2)

For event-related designs, the durations of the events would be

considered instantaneous. Hence, the duration in the function

fmri.stimulus would be 0. The example above is an example of a

block design. The argument order in the function fmri.design is

the order of the polynomial drift term of the design matrix, the

default value of the order of the polynomial is 2. If there are K
experimental stimuli, there will be k expected BOLD responses

hrf1, hrf2,:::,hrfK . Note that in this example K~1. The design

matrix can be created as follows

x ,- fmri.design(cbind(hrf_1, …, hrf_K), order = 2)

Given the design matrix, we may conduct voxel-wise analysis of

the brain using regression models to identify the areas activated

during the task. Suppose Y is the voxel|time matrix. Then we

can use the following code for the analysis with the design matrix

above via the fmri.lm function in fmri package.

model ,- fmri.lm(img, x, keep = ‘‘all’’)

The argument keep in the function fmri.lm describes the parts

of the output returned by the function. The default is keep = ‘‘all’’,

where residuals are included in the returned object. Alternatively,

we can perform similar analysis via the lm function as follows.

First, extract the data array and construct the data matrix as

discussed in Section 4.2.

ttt ,- extract.data(img)

mask ,- img$mask

dataMatrix ,- NULL

noScans ,- img$dim[4]

for(t in 1:noScans) –

scan ,- ttt[,,,t]

dataMatrix ,- rbind(dataMatrix, scan[mask])

}

We can now run the lm function for each voxel and extract the

coefficients and p-values. Note, we only use the lm function for

didactic reasons, as the calculations can be done more efficiently

using other approaches.

lms ,- apply(dataMatrix, 2, function(y) lm(y,x))

# obtain the summary statistics for each voxel

summaries ,- lapply(lms, summary)

# Coefficients

coefs ,- lapply(summaries, function(x) x$coefficients)

# Intercept map

int_vals ,- sapply(coefs, function(x) x[‘‘ (Intercept)’’, ])

int_est ,- int_vals[‘‘Estimate’’,]

int_pvals ,- int_vals[‘‘Pr(.|t|)’’,]

# Slope map

beta_vals ,- sapply( coefs, function(x) x[2,])

beta_est ,- beta_vals[‘‘Estimate’’,]

beta_pvals ,- beta_vals[‘‘Pr(.|t|)’’,]

As a result of fitting the linear model, we obtain coefficients and

their p-values for each voxel. The resulting p-values can be

thresholded using a multiple comparisons correction procedure.

Finally, the map can be saved in an image format to visualize the

areas that are significantly associated with the task.

6 Between-subjects random effect models
In the fMRI literature, ‘‘random effect analysis’’ refers to an

inter-subject analysis of paradigm-related contrast images. Specif-

ically, in the first stage, subject-specific regression models are fit,

relating the HRF-convolved design matrix to the fMRI time series

at each voxel separately. Coefficients or estimable linear combi-

nations of coefficients (so-called contrasts) are obtained from the

fit. For each subject, as there is one contrast per voxel (one

coefficient per voxel), the resulting collection of voxel-specific

contrast values is referred to as the subject specific contrast image,

and is usually stored as a 3D image. Random effect models then

analyze these images across subjects. That is, they compare inter-

subject variation in estimated hemodynamic response to the

paradigm to variation in covariates, diagnoses, treatments, and so

on. The name ‘‘random effect analysis’’ is given as the process is

an approximation of formal random effects.
6.1 Example: group activation. Below, we consider a

simple form of random effect analysis. We take the subject-specific

contrasts and test whether their voxel specific mean is different

from 0. One of the SPM datasets discussed in Section 4.1 is used to

illustrate the results. We will assume that the following steps have

been completed using the code provided in Section 4.2:1) a mask

containing nonbackground voxels has been created, 2) the mask

has been applied to every subject’s contrast map resulting in a

vectorized map, 3) the data have been concatenated into a matrix

containing noSubjects (number of subjects) rows and noVoxels

(number of voxels) columns, 4) the data matrix is assigned to the

variable dataMatrix. In our case, there are 12 subjects and roughly

50,000 non-background voxels. As a first test, consider a test of 0

mean applied at each voxel.

# apply the function t.test to every column (voxel)

ttest.out ,- apply(dataMatrix, 2,

function(x) {

temp ,- t.test(x)

c(temp$statistic, temp$p.value)})

# label the rows

rownames(ttest.out) ,- c(‘‘statistic’’, ‘‘pvalue’’)

Figure 5 displays the p-value histogram. Next, we threshold

these p-values using the false discovery rate (FDR) threshold in

AnalyzeFMRI package.

Figure 5. P-value histogram from a group-level test.
doi:10.1371/journal.pone.0089470.g005
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Threshold ,- Threshold.FDR(ttest.out[1,],

q = .05,

cV.type = 2,

type = ‘‘t’’,

df1 = noScans - 1)

Now we can create an image where we plot the thresholded p-

values overlaid on a template brain. The resulting image can be

plotted using the image function in R as described in Section 8. A

slice from the resulting image overlaid on a template brain is

shown in Figure 6.

outputImage ,- array(0, imageDim)

toSave ,- ttest.out[1,] . = Threshold

outputImage[mask[toSave]] ,- ttest.out[1, toSave]

6.2 Example: permutation testing. Permutation testing

[53] is often used to identify changes in activation in a group of

subjects based on a covariate, such as disease diagnoses. As in

example 6.1, suppose the mask has been created and the images

have been vectorized and saved in the matrix dataMatrix. In

addition, each subject’s disease status is given as 0 for control or 1

for disease group. For any non-background voxel, if there is no

difference in the experimental effect between the control and

disease groups, then the labeling of each subject as 0 or 1 should be

arbitrary. The labels can be permuted to obtain the t-statistic (e.g.,

mean difference between the two groups) for that voxel

corresponding to each permutation. The distribution of the

resulting test statistics for all permutations is often referred to as

the permutation distribution.

# Number of subjects

n.s ,- 12

n,- 2‘n.s

# Matrix of all possible combinations of 1 and 0 for each

subject

perm.mat ,- matrix(1,n.s,n)

for(i in 1:n.s){

p,- n/(2‘i)

j,- 1

while(j,(2‘i)){

perm.mat[i,(p*j+1):(p*(j+1))] ,- 0

j,- j+2

}}

The R function expand.grid() can also be used to obtain the grid

for the permutation test above. For illustration purposes, we

compute permutation distributions for two randomly selected

voxels.

# Randomly select two voxels

perm.noVoxels = 2

sub.dataMatrix = dataMatrix[,sample(noVoxels, size = perm.-

noVoxels)]

# Find the distribution of the t-statistic for each permutation

permutation.dist ,- matrix(0, n, perm.noVoxels)

for(i in 1:n){

data.temp ,- perm.mat[,i]*sub.dataMatrix

ttest.out ,- apply(data.temp, 2,

function(x) {

temp ,- t.test(x)

temp$statistic

})

permutation.dist[i,] ,- ttest.out

}

The permutation distributions of the t-statistics for the two

randomly selected voxels are shown in Figure 7. Using the

permutation distribution, one can compute the p-value of

observing the true labeling of disease status and make a decision

about whether to reject the null hypothesis or not.

7 Connectivity analysis
Functional connectivity refers to the analysis of correlations of

measured brain function between potentially remote areas of the

brain [15]. In fMRI, this translates to evaluating correlations, or

perhaps other forms of associations between voxels or regions. We

emphasize that fMRI represents only one modality to investigate

functional connectivity. Others include: EEG, MEG and PET.

When investigating connectivity, it is important to consider the

goals of the analysis and the spatial/temporal resolution of the

technology under study [15]. Such analyses have become so

influential in fMRI, that they have been abbreviated as fc-fMRI

(for functional connectivity fMRI). A subset of such analyses

considers functional connectivity while a subject is at rest in the

scanner, and is often referred to as resting state functional

connectivity (rs-fc-fMRI). Much of the analysis of rs-fc-fMRI

centers around the so-called ‘‘default mode network’’, a hypoth-

esized brain network that is activated in subjects at rest [44].

7.1 Connectivity and preprocessing. The analysis of brain

connectivity data requires special preprocessing that may be useful

for paradigm-related studies, but is crucial for the study of

connectivity. Most notably it is addressing background nuisance

signals. These include signals related to cardiac function and

respiration. Because one is concerned with correlations between

voxels, such background effects can create spurious relationships

that are not of interest. In contrast, they are less crucial in a

paradigm-related study, since the paradigm is likely not aliased

with the nuisance signal, though to the contrary, they are probably

not orthogonal to the paradigm. In event-related designs where

events are presented randomly, the randomization mechanism

helps ensure a lack of relationship with nuisance signals.

There are several methods for addressing nuisance signals in fc-

fMRI. These include a connectivity analysis of the ventricles, the

spaces in the brain filled with cerebrospinal fluid. There should be

Figure 6. A slice of the thresholded output map overlaid on a
template brain using the image() function.
doi:10.1371/journal.pone.0089470.g006
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no measured connectivity of interest in the ventricles, hence any

correlations found here and elsewhere likely represent nuisance

signals. A similar approach would look at white matter, though

such analyses would be highly dependent on very accurate

registration. These issues should be taken into account when

preprocessing the data.

7.2 Seed voxel approaches. Assuming that there are no

nuisance signals in the brain, the correlations of the fMRI time

courses can be computed for each pair of voxels. The number of

these pairs is often very large and the brute force computation of

the correlations may be computationally expensive. Instead, one

can analyze regions of interest (ROI), which can be obtained, for

example, by using the anatomy of the brain or by independent

component analysis as described in Section 7.3. For each ROI, a

seed voxel can be chosen as one of the voxels in the ROI or as the

average time course of all voxels in the ROI. The correlation map

of the seed voxel with the remaining voxels in the brain is called

the connectivity map. The obtained connectivity maps may be

used, for instance, to compare the connectivity of an ROI between

subjects in two disease groups.

Generally, after calculating the raw correlation values, a Fisher

R to Z transform is performed before analyzing the correlation

map. The transform is defined as

z~
1

2

log(1zr)

log(1{r)
,

where r is a correlation value. The resulting connectivity maps

should have approximately normally distributed values. Standard-

izing this matrix by the standard error 1ffiffiffiffiffiffiffiffi
T{3
p , where T is the

number of time points used to compute the correlation, is

frequently used, especially when different participants have

different lengths of scans. These maps then can be analyzed using

random Markov field corrections for multiple comparisons, using

t-tests or the nonparametric rank-sum test, or other methods for

testing differences across groups [15].

7.3 Singular value decomposition and independent

component analysis. Since the fMRI data are very large and

complex, dimension reduction techniques are often used to

identify important signals in the data as well as help with

visualization. For example, singular value decomposition, a well-

known statistical dimension reduction technique, is often used for

preprocessing the data before testing or inference.

Another commonly used dimension reduction method is

independent component analysis (ICA, see [45] for an extensive

overview). It is mainly used in fMRI to obtain functional networks

in the brain. It has been implemented both for resting-state and

task-related fMRI experiments. Here we show the use of ICA for

an attention task using one of the SPM example datasets [46].

Four different conditions were explored: fixation, attention, no

attention and stationary.

There are several methods one can use for applying ICA. For

instance, the R package AnalyzeFMRI has a function f.ica.fmri

that is based on the fastICA algorithm [45]. If the data are in

Analyze format, where each 3D scan is saved in a separate file, the

individual scans per time point have to be combined into one 4D

image in order to use f.ica.fmri. Here, the 4D image is saved as

Figure 7. Permutation histograms of t-statistics for two voxels.
doi:10.1371/journal.pone.0089470.g007
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fullimg.img, where one of the dimensions is time and the other

three are the image dimensions.

library(AnalyzeFMRI)

# Specify the number of components that should be estimated

m,-10

f,- f.ica.fmri(‘‘fullimg.img’’, n.comp = m)

The fastICA package in R can be used directly for ICA analysis

as follows. We create a matrix dataMatrix that is a 2D

(time|voxel) version of the fMRI data as described in Section

4.2, and apply the fastICA function to obtain m independent

components.

library(fastICA)

f,- fastICA(t(dataMatrix), n.comp = m)

The variable f $S contains the collection of the independent

components. Next, we back-reconstruct each of the components as

an image. The networks are identified as the regions that are

highly activated in the corresponding independent component. In

other words, to obtain the brain networks we can threshold the

values of each column in f $S. We will use a simple thresholding

tool here by including the values greater than a threshold �. We

also save the arrays in image format for visualization. Note, we

assume imageDim constains the image dimensions as computed in

Section 4.2.

theta ,- 2

S ,- f$S

S[S , = theta] ,- 0

imageDimComp ,- c(imageDim, m)

img ,- array( 0, dim = imageDimComp)

for(i in 1:m){

temp2 ,- array(0, imageDim)

temp2[mask] ,- S[,i]

img[,,,i] ,- temp2[,,]

}

f.write.analyze(img,

file = ‘‘fica’’,

size = ‘‘float’’,

pixdim = c(3, 3, 3, 1, 0, 0, 0),

originator = c(27, 38, 18, 0, 0))

Figure 8 shows a slice of the default brain network obtained by

the above fastICA algorithm thresholded and overlaid on a

template brain.

7.4 Group ICA. Group ICA is the extension of the ICA

method used to obtain brain networks from fMRI datasets in a

population. The method was first introduced by [47] and has since

been widely used in the neuroimaging literature [48], [49]. The

method is based on concatenating the two-dimensional

time|voxel matrices observed for each subject and applying

principal component analysis to reduce the dimension to the

desired number of components. Then the single subject ICA

algorithm is applied to the resulting matrix to obtain the common

independent components for the group.

There are two different choices for matrix concatenation: one

assumes that the spatial brain networks are statistically indepen-

dent (spatial group ICA), the other assumes that the time courses

are statistically independent (temporal group ICA). Spatial group

ICA, which assumes common spatial networks across subjects yet

different temporal mixing matrices is more frequently used. By

assuming common spatial maps, one can concatenate all subjects’

data in the temporal domain, and apply ICA to the aggregated

data matrix. Below is an example for spatial group ICA:

fileDir ,- ‘‘pathToImageFile’’

files ,- dir(fileDir, pattern = ‘‘*.img’’, full.names = TRUE)

groupDataMatrix ,- NULL

for (file in files) {

img ,- f.read.analyze.volume(file)

imageDataMatrix ,- t(apply(img, 4, function(imgi) imgi[-

mask]))

rmeans ,- rowMeans(imageDataMatrix)

cmeans ,- colMeans(imageDataMatrix)

imageDataMatrix ,- sweep(imageDataMatrix, 2, cmeans,

‘‘-’’)

imageDataMatrix ,- sweep(imageDataMatrix, 1, rmeans,

‘‘-’’)

groupDataMatrix ,- rbind(groupDataMatrix, imageData-

Matrix)

}

m ,- 20

f ,- fastICA(t(groupDataMatrix), n.comp = m)

8 Displaying results
Different modalities can be used for displaying the results

obtained by the analysis of fMRI data. In most cases, a group of

voxels in the brain is found by the analyses and can be visualized

by overlaying the voxels on a template brain. For instance, in the

case of ICA, the functional networks obtained can be displayed by

overlaying the networks on a template brain. In this section, we

will discuss only a few of the functions that can be used for

visualization in R or other software.

8.1 Within R. The function image() in R can be used for

plotting the 2D images for each value of the third dimension to

display the images for each slice of the brain. The rgl and misc3d

packages have tools for creating 3D renderings and isosurfaces

directly in R. We have found that images generally need to be

slightly downsampled to avoid memory issues. Usually, this does

not impact the appearance of the graphics dramatically. The

misc3d package has some functions for plotting images and

rendering in 3D activation maps for fMRI (http://www.

tandfonline.com/doi/abs/10.1198/jcgs.2010.191ed). Contour3d

Figure 8. The default brain network obtained via fastICA and
overlaid on a template brain.
doi:10.1371/journal.pone.0089470.g008
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and image3d are useful functions for displaying results and

embedding 3D objects into PDFs or RGL objects.

When plotting images in R, a few important points should be

taken into consideration. When overlaying selected voxels on a

template brain, note that the template brain and the statistical

image results: 1) may not have the same array dimensions, 2)

voxels may not correspond to the same real world dimensions,

such as the voxels in the template being 1 mm3 while the voxels in

the statistical image being 3 mm3, 3) the images may not have the

same origin. This information is contained in the raw and template

image’s header files. The origin is the point that is used to match

images. Hence, when overlaying images if one appears shifted, it is

probably due to incorrectly set values of the image origins.

Another problem that can occur is that the voxels are not square.

For example, the Z physical dimension (in the direction from the

feet to the head), is often different than that of the other two. If this

is not accounted for, the images will appear strange, not unlike a

geographical map with an incorrect contrast ratio. These issues

can all be handled in R.

Finally, when plotting the image via the image function, the

number of colors used in plotting is 12 by default. That number

can be increased by changing the parameter col (e.g., col =

heat.colors(100)) to obtain a smoother image. In addition, it is

common to plot fMRI data in greyscale as shown in Figure 2,

hence the color spectrum can be changed to col = grey.-

colors(100) in the image function to achieve that.
8.2 Third party software. There are several visualization

software platforms that can be used for examining fMRI data.

They vary from software for quick visualization to 3D renderings

of the brain with complicated visualizations of slices and cross-

sections. For instance, 3D Slicer and Mipav can be used to obtain

3D renderings of the brain overlaid on template brains. These

software platforms can also be used for masking the brain or

cropping regions of interest as well as registration. The videos at

http://www.youtube.com/watch?v = GNsWRnm7gQw show a

step-by-step illustration of 3D Slicer or Mipav for visualization

and analyses.

Further reading

Below we give an incomplete list of papers in the area.

N N A good starting point for fMRI is the SPM book [15]

N N Nicole Lazar’s introduction to fMRI [50] and book [18]

N N Martin Lindquist’s manuscript on fMRI [17]

N N Thomas Nichol’s overview paper on permutation testing in

fMRI [43]

N N Vincent Calhoun’s introductions to ICA and group ICA in

fMRI [51,47]

N N Jonathan Taylor’s manuscript about the HRF [52]

N N Technical papers about random field theory are [53,54]

N N An accessible discussion including permutation testing can be

found in [55] and [56]

N N A somewhat dated but still very relevant, overview of the

analysis of fMRI data [57]

N N A more recent tutorial can be found here [58]

N N An expository article on R and neuroimaging [59]

N N Our work on singular value decomposition for fMRI [60]

This manuscript gives an admittedly very brief introduction and

quick start guide for fMRI. For those interested in pursuing further

development in the area, we recommend investigating processing

pipelines as a next important step.
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